Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data flow on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-γ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
✅ saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-11-20 22:26:11 UTC)
✅ saved: Storage(uid='l9bZSx5h', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-11-20 22:26:11 UTC, created_by_id=1)
💡 loaded instance: testuser1/mydata
💡 did not register local instance on hub

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
💡 lamindb instance: testuser1/mydata

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

# This function mimics the upload of files via the UI
# In reality, you simply drag and drop files into the UI
def run_upload_crispra_result_app():
    ln.setup.login("testuser1")
    transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
    ln.track(transform)
    output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
    output_file = ln.File(output_path, description="Raw data of schmidt22 crispra GWS")
    output_file.save()


run_upload_crispra_result_app()
Hide code cell output
💡 saved: Transform(uid='nrIC2aJ0wEKWKN', name='Upload GWS CRISPRa result', type='app', updated_at=2023-11-20 22:26:13 UTC, created_by_id=1)
💡 saved: Run(uid='gTcS00pYqGgUMgz4OKE1', run_at=2023-11-20 22:26:13 UTC, transform_id=1, created_by_id=1)

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

def run_hit_identification_notebook():
    # log in as another user
    ln.setup.login("testuser2")

    # create a new transform to mimic a new notebook (in reality you just run ln.track() in a notebook)
    transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
    ln.track(transform)

    # access the upload file
    input_file = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()

    # identify hits
    input_df = input_file.load().set_index("id")
    output_df = input_df[input_df["pos|fdr"] < 0.01].copy()

    # register hits in output file
    ln.File(output_df, description="hits from schmidt22 crispra GWS").save()


run_hit_identification_notebook()
Hide code cell output
💡 saved: Transform(uid='dZxmhlkYyNfUNS', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-11-20 22:26:14 UTC, created_by_id=1)
💡 saved: Run(uid='1j6kyYwTeZG1URA9N5d5', run_at=2023-11-20 22:26:14 UTC, transform_id=2, created_by_id=1)

Inspect data flow:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_flow()
_images/0e9833e8930368c74b06042298a88dad39b90e91bd8bb07b6794559b373fb26a.svg

Sequencer upload #

Upload files from sequencer:

def run_upload_from_sequencer_pipeline():
    ln.setup.login("testuser1")

    # create a pipeline transform
    ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
    # register output files of the sequencer
    upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
        "perturbseq", basedir=ln.settings.storage, output_only=False
    )
    ln.File(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
    ln.File(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()


run_upload_from_sequencer_pipeline()
Hide code cell output
💡 saved: Transform(uid='l65Z2mtXNr7FpX', name='Chromium 10x upload', type='pipeline', updated_at=2023-11-20 22:26:15 UTC, created_by_id=1)
💡 saved: Run(uid='xy0n7b8Q7IaJ3zplTU6Y', run_at=2023-11-20 22:26:15 UTC, transform_id=3, created_by_id=1)
❗ file has more than one suffix (path.suffixes), inferring: '.fastq.gz'
❗ file has more than one suffix (path.suffixes), inferring: '.fastq.gz'

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

def run_scrna_analysis_pipeline():
    ln.setup.login("testuser2")
    transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
    ln.track(transform)
    # access uploaded files as inputs for the pipeline
    input_files = ln.File.filter(key__startswith="fastq/perturbseq").all()
    input_paths = [file.stage() for file in input_files]
    # register output files
    output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
    ln.save(output_files)

    # Post-process these 3 files
    transform = ln.Transform(
        name="Postprocess Cell Ranger", version="2.0", type="pipeline"
    )
    ln.track(transform)
    input_files = [f.stage() for f in output_files]
    output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
    output_file = ln.File(output_path, description="perturbseq counts")
    output_file.save()


run_scrna_analysis_pipeline()
Hide code cell output
💡 saved: Transform(uid='WD5xm2Qg1u9eiN', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-11-20 22:26:16 UTC, created_by_id=1)
💡 saved: Run(uid='2G90VcqUu5XX9bqocRJB', run_at=2023-11-20 22:26:16 UTC, transform_id=4, created_by_id=1)
❗ file has more than one suffix (path.suffixes), inferring: '.tsv.gz'
❗ file has more than one suffix (path.suffixes), inferring: '.tsv.gz'
❗ file has more than one suffix (path.suffixes), inferring: '.mtx.gz'
💡 saved: Transform(uid='elJX8f91ZrLOqz', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2023-11-20 22:26:16 UTC, created_by_id=1)
💡 saved: Run(uid='VS0NziIPUs8ricYpvSQf', run_at=2023-11-20 22:26:16 UTC, transform_id=5, created_by_id=1)

Inspect data flow:

output_file = ln.File.filter(description="perturbseq counts").one()
output_file.view_flow()
_images/b8b0ac72f4b8c0418b87d6ba54fe8488a3d55947bec174818ca4578c1bc91d5a.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

def run_integrated_analysis_notebook():
    import scanpy as sc

    # create a new transform to mimic a new notebook (in reality you just run ln.track() in a notebook)
    transform = ln.Transform(
        name="Perform single cell analysis, integrate with CRISPRa screen",
        type="notebook",
    )
    ln.track(transform)

    # access the output files of bfx pipeline and previous analysis
    file_ps = ln.File.filter(description__icontains="perturbseq").one()
    adata = file_ps.load()
    file_hits = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
    screen_hits = file_hits.load()

    # perform analysis and register output plot files
    sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
    filesuffix = "_fig1_score-wgs-hits.png"
    sc.pl.umap(adata, color="score", show=False, save=filesuffix)
    filepath = f"figures/umap{filesuffix}"
    file = ln.File(filepath, key=filepath)
    file.save()
    filesuffix = "fig2_score-wgs-hits-per-cluster.png"
    sc.pl.matrixplot(
        adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
    )
    filepath = f"figures/matrixplot_{filesuffix}"
    file = ln.File(filepath, key=filepath)
    file.save()


run_integrated_analysis_notebook()
Hide code cell output
💡 saved: Transform(uid='XZsyPLB7rzvJhw', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2023-11-20 22:26:19 UTC, created_by_id=1)
💡 saved: Run(uid='IP7vIRkI245s8cDFg33U', run_at=2023-11-20 22:26:19 UTC, transform_id=6, created_by_id=1)
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png

Review results#

Let’s load one of the plots:

# track the current notebook as transform
ln.track()
file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
Hide code cell output
💡 notebook imports: ipython==8.17.2 lamindb==0.61.0 scanpy==1.9.6
💡 saved: Transform(uid='1LCd8kco9lZUz8', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2023-11-20 22:26:19 UTC, created_by_id=1)
💡 saved: Run(uid='6EJKKVFyaXianszTjsJP', run_at=2023-11-20 22:26:19 UTC, transform_id=7, created_by_id=1)
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/YoeQwjDvzSqOdPS36khM.png')
display(Image(filename=file.path))
_images/cc92513294ee37e9961661fdc08e251027317eb7a1f5308c26df308bc57787f5.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_flow()
_images/8148d9b5031d7420071c15f40f8893d9676a8b9c715b20c2fdcd771b2af51761.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
uid name short_name version type latest_report_id source_file_id reference reference_type initial_version_id updated_at created_by_id
id
4 WD5xm2Qg1u9eiN Cell Ranger None 7.2.0 pipeline None None None None None 2023-11-20 22:26:16.501243+00:00 1
transform.view_parents()
_images/ff3e3cd3bef333cb12683df9b3a9399f96ac1d0ab1a7cdca5d312b5e03a7407c.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id visibility key_is_virtual updated_at created_by_id
id
2 tMSHZEujjoT7iLiIVssO 1 None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 fjvT1POciz7QFCK6Wzaflw md5 2 2 None 0 True 2023-11-20 22:26:14.941153+00:00 1

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(uid='nrIC2aJ0wEKWKN', name='Upload GWS CRISPRa result', type='app', updated_at=2023-11-20 22:26:13 UTC, created_by_id=1)

And which user?

file.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-11-20 22:26:15 UTC)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
uid name short_name version type reference reference_type updated_at latest_report_id source_file_id initial_version_id created_by_id
id

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
uid name short_name version type reference reference_type updated_at latest_report_id source_file_id initial_version_id created_by_id
id

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File
uid storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id visibility key_is_virtual updated_at created_by_id
id
10 YoeQwjDvzSqOdPS36khM 1 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 ijpft7zAYShlKDXYYAD4hw md5 6 6 None 0 True 2023-11-20 22:26:19.446374+00:00 1
9 iSYm3GG5pGVdfYXRWlp8 1 figures/umap_fig1_score-wgs-hits.png .png None None None 118999 74WuaFnZeoMTvSpY--lbrA md5 6 6 None 0 True 2023-11-20 22:26:19.257575+00:00 1
8 mrOQldU7u5KwMc1Mzhy0 1 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 5 5 None 0 False 2023-11-20 22:26:18.125872+00:00 1
7 NU2UYWS024lWfElHbACz 1 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None 6 yngoQ7oMOnOr_kpgIgImMQ md5 4 4 None 0 False 2023-11-20 22:26:16.524757+00:00 1
6 Kjimy5yqZl3vwLC3LrlB 1 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 wkEarrdrXu5vwnP3HPp5jQ md5 4 4 None 0 False 2023-11-20 22:26:16.524285+00:00 1
5 cD1PM7l5wfQKIhNnxeP8 1 perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 R0GXkbLfdV_CI1HX4BkPjQ md5 4 4 None 0 False 2023-11-20 22:26:16.523712+00:00 1
4 UkUnDWVfHUdbhXrzUfSJ 1 fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 Ed71lt5EGJem-A4JtwnwnA md5 3 3 None 0 False 2023-11-20 22:26:15.847908+00:00 1
Run
uid transform_id run_at created_by_id report_id is_consecutive reference reference_type
id
1 gTcS00pYqGgUMgz4OKE1 1 2023-11-20 22:26:13.511040+00:00 1 None None None None
2 1j6kyYwTeZG1URA9N5d5 2 2023-11-20 22:26:14.884796+00:00 1 None None None None
3 xy0n7b8Q7IaJ3zplTU6Y 3 2023-11-20 22:26:15.836741+00:00 1 None None None None
4 2G90VcqUu5XX9bqocRJB 4 2023-11-20 22:26:16.504359+00:00 1 None None None None
5 VS0NziIPUs8ricYpvSQf 5 2023-11-20 22:26:16.534721+00:00 1 None None None None
6 IP7vIRkI245s8cDFg33U 6 2023-11-20 22:26:19.029069+00:00 1 None None None None
7 6EJKKVFyaXianszTjsJP 7 2023-11-20 22:26:19.834737+00:00 1 None None None None
Storage
uid root type region updated_at created_by_id
id
1 l9bZSx5h /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-11-20 22:26:11.658199+00:00 1
Transform
uid name short_name version type latest_report_id source_file_id reference reference_type initial_version_id updated_at created_by_id
id
7 1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None None None None 2023-11-20 22:26:19.832293+00:00 1
6 XZsyPLB7rzvJhw Perform single cell analysis, integrate with C... None None notebook None None None None None 2023-11-20 22:26:19.024541+00:00 1
5 elJX8f91ZrLOqz Postprocess Cell Ranger None 2.0 pipeline None None None None None 2023-11-20 22:26:16.532413+00:00 1
4 WD5xm2Qg1u9eiN Cell Ranger None 7.2.0 pipeline None None None None None 2023-11-20 22:26:16.501243+00:00 1
3 l65Z2mtXNr7FpX Chromium 10x upload None None pipeline None None None None None 2023-11-20 22:26:15.834199+00:00 1
2 dZxmhlkYyNfUNS GWS CRIPSRa analysis None None notebook None None None None None 2023-11-20 22:26:14.880844+00:00 1
1 nrIC2aJ0wEKWKN Upload GWS CRISPRa result None None app None None None None None 2023-11-20 22:26:13.508551+00:00 1
User
uid handle name updated_at
id
2 bKeW4T6E testuser2 Test User2 2023-11-20 22:26:16.494103+00:00
1 DzTjkKse testuser1 Test User1 2023-11-20 22:26:15.825566+00:00
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai (uid: DzTjkKse)
💡 deleting instance testuser1/mydata
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata